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A gas of long thin rods undergoes an order-disorder phase transition as a function 
of rod concentration. We have evaluated the critical concentration at which this 
first-order transition occurs using Onsager's hard-core interaction model. We obtain 
the nematic angular distribution function of rods in the ordered phase expanded in a 
series of Legendre polynomials. 
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1. I N T R O D U C T I O N  

A gas of long thin rods undergoes an order-disorder phase transition as a function 
of  rod concentration. Such a phase transition has been observed experimentally (1.2,a) 
in systems of rodlike molecules in solution (e.g., tobacco mosaic virus), and theoretical 
results have been obtained using hard-core interaction models, c4-8) At low rod 
concentrations, such a gas is isotropic; the long axes of the rods point in random 
directions. As the concentration is increased, the rods get in each other's way with a 
high cost in energy. Finally, at a critical concentration, the rods tend to line up 
to avoid each other, the decrease in entropy being more than counteracted by the 
gain in energy. 

Two theoretical approaches have been applied to the problem. Flory's theory (6~ 
and its extension by DiMarzio (7) to molecules of various shapes is based on the 
lattice model. The other approach, formulated by Onsager c4~ and also used by 
Isihara (5~ and Zwanzig, ~s) uses Mayer cluster expansion theory with successive 
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cluster contributions proportional to powers of parameters involving the concentra- 
tion of rods and their geometry. 

In this paper we will follow Isihara's extension of Onsager's formulation to cal- 
culate the critical concentration and degree of anisotropy near the phase transition. (5) 
Our results, however, differ from those of Isihara, as discussed in Sections 3 and 4. 

2. E Q U A T I O N  D E T E R M I N I N G  M O L E C U L A R  O R I E N T A T I O N  

We briefly outline Onsager's (4) formulation and its extension by Isihara. (5~ The 
colloidal particles are assumed to be in solution, in dialytic equilibrium with a solvent 
of constant composition across an osmometer membrane. The rods in solution are 
in the configuration which minimizes the quantity 

F = Fsolut ton  - -  Fso lvent  
(1) 

= N~lz f (T ,  solvent) -- kTlog B~(N~, IT, T) 

Here F is the free energy, N~ is the number of rods and B~ is the configuration integral 

B~(N~ V, T) = f exp(--W/kT) dr (2) 
' N ~  ! 

W ~ W~r,[(q0, (q.,),-.., (qN~)] (3) 

W is the potential of the average forces which act between the particles in a configura- 
tion described by the sets of coordinates (ql), (q2) ..... (qN,) of particles 1, 2,..., N~. 
It is necessary to specify the orientation of the rods, as well as the positions of their 
centers, and the work against the corresponding torques must be included in W. 

The configuration integral in (2) is treated by the usual Mayer cluster expansion 
theory. Assuming additive forces 

W = ~ W.~[(q~), (qj)] ~_ ~ W~j (4) 
i < j  i < J  

and defining 

gives 

with 

~i5 ~- exp(--Wij/kT) --  1 (5) 

1 
/31 = T f ~12 d-q d~'2 ; (7) 

' f  fi2 ~ -~ c~1~2~dP81 d'cz dr2 dr3 ; etc. (8). 

Instead of including an integral over all particle orientations in J" dr, Onsager 
introduces the artifice of treating particles of different orientations as particles of  

log B, • N~[1 q- log(VINe) + �89 fll -1- �89 2 ]32 -k ""] (6) 
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different kinds. The number of particles in a solid angle AOv surrounding direction ~. 
measured from an arbitrarily chosen fixed axis is 

where 

AN~ =~ N~f(~) AO~ v = I, 2 ..... s (9) 

L 
AN~ = N~, (10) 

andf(5~) is an as yet undetermined function which depends on the rod configuration. 
The free energy of this assembly of particies of different kinds is additive if due 
allowance is made for the entropy of mixing: 

log B~ = ~ AN,[1 -? log(VAO.I4~rN~)] + 2@ ~ [3~(s s AN~ ANr 
v vtv" 

1 -4- - f ~  ~,~,~,, fi~(~., ~, , S~,,) AN, AN~, AA~,, § ... (11) 

The cluster integrals in (7), (8), etc., are now evaluated for fixed orientations ~ of 
the particles involved. 

Finally, the sums over angular orientations are replaced by integrals involving 
the normalized angular distribution function f(~): 

f f (~ )  df2(~) = 1 (12) 

and (11) becomes 

logB. = " .  11-P-10g ( - ~ - ) -  fS( )log[4 rf( )] dO(~) 

N~ 
+ 2V f f  fi'(~' s ')f(~)f(~') dO dO' 

N ~  ~ 
4--~V-~ f f f  /32(~'a"K")f(S)f(S')f(a")dOdO'dD" 4-""i  (13) 

The unknown angular distribution function f(cl) is now determined by requiring 
that the free energy of (1) be a minimum, or that log B~ be a maximum, subject 
to condition (12). Performing a functional differentiation of (13) with respect to f, 
including condition (12) by the usual method of Lagrange multipliers, and setting 
the result equal to zero, gives a nonlinear integral equation for f: 

f(a) -= exp[p f fl~(s'S')f(a')dX2"4- P~'~f fi2(a'a"a")f(a')f(S")dO' dO" + "''1 
f exp[p ffll(~, ~')f(~') dO' + p2 fffi2(~, ~', 8")f(~')f(~") ds dO" + ...] dO 

(14) 
where p = N~/V is the number concentration of rods. Among the solutions to this 
equation is the one that minimizes the free energy. The orientational degeneracy 
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of the solutions is eliminated by looking only for solutions which have cylindrical 
symmetry about the axis from which direction c~ is measured [see comments preceding 
(9)]. This is then the axis about which we will look for a preferential alignment 
of the rods. 

Onsager has shown on general grounds that for a three-dimensional gas of rods 
it is sufficient to retain only the first cluster integral in (14) to obtain an order- 
disorder phase transition. 

f(5) = exp [p J/31(5, 5') f(~')  dg2' 1 
f exp[p J 51(5, 2') f(S')  dC2'] ds 

(15) 

The cluster integral ~1(5, 8') for cylindrical rods interacting via a hard-core potential 
has been evaluated in detail by Onsager. For rods of length L and diameter d, the 
result is 

filO') = --[ 2L2d § (~r/2) d 3] sin 7 -k [(~v/2)(1 -k I cos Y l) -q- 2E(sin 7)] Ld2 (16) 

where 0 ~ 7 ~< ~/2 and E(sin Y) is the complete elliptic integral of the second kind: 

Fo r L > ~  d 

E(sin y) = (1 -- sin ~ y sin s q~)112 dq~ (17) 
~0 

fll( '~) ~ --2L2d sin ), (18) 

To estimate the critical concentration, Onsager chooses a trial function f(O) 
which is peaked about 0 = 0 and contains an arbitrary parameter ~: 

cosh(~ cos 0) (19) f(O) = 4zr sinh 

The free energy is then minimized with respect to c~ and the resulting free energy 
is compared to that of an isotropic gas of rods If(0) = ~r]. The critical concentration 
is then the one at which the anisotropicf(0) begins to give a lower free energy than 
the isotropic one as p is increased. Using (18), his result is 

L~ dpo = 5.1085 (2o) 

Independently of his choice of f(O), Onsager shows on general grounds that 
the phase transition is of first order. The function f(0) is discontinuous with respect 
to rod concentration at the phase transition. The usual van der Waals loop can be 
constructed by equating the pressures and chemical potentials of the isotropic and 
anisotropic phases at the critical point. 

Isihara (5) goes about solving the integral equation (15) in a more systematic 
manner, by expanding both the cluster integral and the angular distribution function 
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in Legendre polynomials. By the symmetry of the system, only even Legendre 
polynomials are necessary. 

51(r) = ~ &e2~(cos r) (21) 

co 

f(O) = ~ C~P~(cos 0) (22) 
/ = 0  

Substituting (21) and (22) into (15) and using the addition theorem of spherical 
harmonics immediately gives 

[ ~ 4~r B, CzP~(cos O)] exp p 41 -+- 1 
f(O) = ~=~ (23) 

2~r f~ [exp p ~ 414rr B'C'P2z(c~ O)] sin O 1 
0 / = 1  

and 

4l q- 1 f~/z f(O) P2z(cos 0) sin 0 dO 
Cz = - -  (24) 

4rr f~/2 f(O) sin O dO 

where the orthogonality properties of Legendre polynomials have been used. These 
are the transcendental equations to determine the expansion coefficients Cz. 

3. E V A L U A T I O N  O F  C R I T I C A L  C O N C E N T R A T I O N  
A N D  A N G U L A R  D I S T R I B U T I O N  F U N C T I O N  

To find an approximate solution for (23) and (24) we first leave out the terms 
corresponding to l >~ 2. This is not meant to imply that the higher-order coefficients 
Cz>2 are much smaller than C1 (in fact we show later that they are not). However, 
in this manner an equation is obtained which is at least numerically tractable and 
whose solution can be used as a first step in an iteration procedure. The resulting 
equation involves only C1; we denote its solution by C1~ 

- -  1 ( 2 5 )  

foeX  
Equation (25) can be solved numerically for (21 ~ as a function of p. For small p it 
has only one solution, namely, Cz ~ = 0 (isotropic rod distribution). When O increases 
beyond the critical value given by 

p~B~ =4.4876 (26) 
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Fig. 1. Plot of Eq. (27). 

two additional solutions emerge. This is best shown graphically by rewriting (25). 
Simple manipulation leads to 

8z 2 
pB~ = 9e ~ .=-- g(z) 

6z -- 9 
]~ e ~ dx 

(27) 

where z = 67rpB1Cl~ Figure 1 is a plot of g(z), with a minimum at z = 2.1609. 
Since the left side of (27) is proportional to z(pB1 ~ 5z/6rrCl~ the two values of  
Cfl for each p are found from the intersections of Fig. 1 with the line g(z) = const �9 z 
of appropriate slope. The resulting values of Ca ~ are shown in Fig. 2. The broken 
line corresponds to the values of C1 ~ obtained from Fig. 1 for z < 2.1609. We dis- 
regard this solution for the reasons given in Section 4. (Isihara ~ chooses this 
solution, with peB 1 = 5). The solution we choose is given by the solid line. There 
C~ ~ increases continuously with increasing pB~ starting from the value C1 ~ = 0.1277 
at p = pc- This branch corresponds to a first order phase transition: C1 ~ jumps 
discontinuously from its isotropic value (C1 = 0) to its value at pc, giving a finite 
degree of anisotropy. 

Using the approximate cluster integral of (12) whose expansion in terms of 
Legendre polynomials is given by 

I 1 + I /3~(~) ~ zrL2d - - ~ +  ~ (4/ 1)(2l-- 3 ) ! ! ( 2 / - -  1)!! P2z(cos~,) 
22~+z/~ (l + 1)! 

(28) 
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we obtain 

and 

B~ = ~ r (29) 

L 2 dpc = 4.5710 (30) 

This value is 10~ lower than Onsager's result. 
To approximate some of  the higher-order expansion coefficients C,  o f f ( 0 )  at 

various concentrations we iterate truncated forms of  (23) and (24). Using the relation 

(4l § 1)(2/--  3) l! (2 / - -  1) !! 
pB~ = (5)(2 ~t-3) l! (l + 1)! pB~ (31) 

obtained from (28), we use as initial values for the iteration 

C n  0 = 
f ~ F 4rr '~-a (2l -- 3)!! (2 / - -  1)!! Czop2~(x)l P~n(x) dx 

o exp [ ~  pB1 z=l ~" 22Z-al!(l+ 1)' 

f l  [ _ ~ _  "-1 (2 / - -  3)!! (2 l - -  1)!~ ] 
exp - pB~ ~ -2~-Tlf-(~ ~)T. " Cz~ dx 

0 ~ i  

n = 2, 3,..., s (32) 
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Table  I. Init ial  Values of C l - -So lu t ion  of Eq. (25) 

pBz Cz ~ 

4.4876 0.12773 
4.4891 0.13652 
4.5020 0.15085 
4.5685 0.17984 
4.6594 0.20120 
4.9270 0.23743 
5.0950 0.25197 

where Cs is the highest coefficient included. With these initial values we then iterate 
the equations 

f l  [ 4~" ( 2 1 -  3)!! 1)!! C~ -1 ] o exp [ 7  pBz i (2 / - -  P2z(x)j P~,~(x) dx 
2~-31! (l + 1)! 

C~ ~ = ~=~ (33) 

Jr" @ ( 2 / -  3)!! ( 2 / -  1)!! C~-Zp2z(x) dx o ~=z 22~-zI! (l + 1)! 

Using the initial values C~ ~ of Table I, the iterations were performed using 
Gauss' numerical integration method with 16 points, until the results changed by 
less than 1%.  The results for various rod concentrations are shown in Table II. 
The resulting angular-distribution function f (0)  is shown in Figs. 3 and 4 for various 
rod concentrations. 

The free energy in terms of the expansion coefficients C~ is found from Eqs. (1), 
(13), (21), (22), and (23) to be: 

( 47r ]z 
F-- N ~ ~  -- l + log p-F ~ ~ B~C~Z 4l +1! N~k T t=0 

Jo U/2 exp [p[ ~ ] -- log ,.., BzCz ( 4 / @ 1 1 )  P2~(cos O) sin O dO (34) 
g=O 

Table  I I .  Expansion Coefficients C n 

pB1 

Ca 4.4876 4.4891 4.5020 4.5685 4.6594 4.9270 5.0950 

C1 0.23629 0 .23665 0.23965 0 .25289 0.26703 0 .29524 0.30743 
C~ 0.19157 0 .19219 0.19738 0.22141 0 .24926 0 .31279 0.34420 
C3 0.10480 0 .10532 0 .10977 0 .13135 0 .15835 0 .22814 0.26705 
Ca 0.046423 0.046740 0.049454 0.063221 0.081763 0.13590 0.16967 
Cs 0.018023 0.018179 0.019529 0.026684 0.037042 0.071079 0.094659 
C6 0.0063680 0.0064348 0.0070162 0.010232 0.015214 0.033493 0.047392 
C7 0.0019582 0.0019819 0.0021890 0.0033756 0.0053170 0.013084 0.019413 
Cs 0.0000047 0.0000047 0.0000048 0.0000053 0.0000060 0.0000076 0.0000086 
Co 0 0 0 0 0 0 0 
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or equivalently 

F - - N ~ t ~  ~ ~ ( 4~ ~2 
-- 1 § log p + log 4~- -- ~ ~o BzC~ N~kT 

- -  47r C~P2~(cos 0) log C~P2~(cos 0) sin 0 dO (35) 
~=0 

The free-energy differences between the isotropic and anisotropic solutions are given 
in Table III, where we have evaluated the quantity 

A _= [ F - - N ~ / z ~  ~ F 
N~kT ]isotropic -- [" -- N~/z~~ N~kT ]anisotroplc (36) 

using Eqs. (34) and (35). The similarity of the two results is an additional check 
on our solution. The free-energy difference A vs. pB1 curve is practically a straight 
line for small A. If  one extrapolates this line to A = 0, one obtains 

PB1 I~=0 = 4.435 (37) 

Since A is discontinuous at a first-order phase transition, this gives a lower bound 
on the critical concentration which is only 1.2 ~ away from our value for p~B~ 

p~Bz > 4.435 (38) 

Finally, we also solved for p~B 1 by truncating Eqs. (23) and (24) at l = 2 instead 
of  l -~ 1, as in (25). We obtain 

p~B~ = 4.482 (39) 

only an 0.1 ~o change from (26). We have therefore found a very accurate value 
of  the critical concentration in this model. The angular-distribution function is of  
course much more sensitive to approximations than the critical concentration. 

Table I I I .  Isotropic-Anisotropic Free-Energy Difference of Eq. (36) 
Using Eqs. (34) and (35) 

pBz A [Eq. (34)] A [Eq. (35)] 

4.4876 0.01078 0.01078 
4.4891 0.01106 0.01107 
4.5020 0.01346 0.01343 
4.5685 0.02679 0.02681 
4.6594 0.04729 0.04731 
4.9270 0.11952 0.11953 
5.0950 0.17203 0.17204 
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4. D I S C U S S I O N  

We have found an accurate value of the critical concentration at which a hard- 
core gas of long thin rods undergoes a first-order phase transition. We have also 
found the angular distribution function of the rods as a function of rod concentration 
by doing a systematic expansion in terms of Legendre polynomials. The low- 
concentration phase is isotropic; in the high-concentration phase, the rods tend to 
align with their long axes parallel to each other. The ordered-phase configuration 
is that of a nematic liquid crystal. 

We have disregarded one of the two anisotropic solutions appearing for p > pc - 
For  pB1 > 5, as chosen by Isihara, this solution would correspond to a second-order 
phase transition in which the rods would go from the isotropic phase to a phase 
in which the long axes of the rods tend to be perpendicular to a preferred axis, 
reminiscent of a cholesteric liquid crystal. It could also correspond to a first-order 
phase transition between ordered phases. We have analyzed this solution in detail 
in Zwanzig's model, where the rods are rectangular and can lie in only three mutually 
perpendicular directions. This solution gives a saddle point rather than a minimum 
in the free energy. A smaU external field or a small anisotropic interaction in addition 
to the hard-core interaction between rods would probably be sufficient to turn the 
saddle point in the free energy into at least a relative minimum in the free energy, 
making the "cholesteric" configuration metastable. 

A P P E N D I X  A - - Q U A D R A T I C  E G I U A T I O N S  
FOR E X P A N S I O N  C O E F F I C I E N T S  

The system of coupled exponential equations (23) and (24) can be transformed 
to a system of coupled quadratic equations for the C~. In principle, the latter set 
of equations should be easier to handle mathematically than the former. In the 
present problem, however, Eqs. (23) and (24) have been used because when they 
are truncated they yield an anisotropic minimum free energy result. This is not the 
case with the quadratic equations given below: the anisotropic solutions that emerge 
upon decoupling do not correspond to a minimum in the free energy of the system. 
To find the anisotropic angular-distribution function, the entire system of coupled 
equations must be solved exactly. 

Let 
47T 

St - -  4l  + ~  pB~ (A1) 

Equations (22) and (23) then are 

f (x) = CzP~(x) = g exp StCzP2~(x) 
g=0 

where x = cos 0 and 

[4 K = ~ S~CzP~ x 
1 

(A2) 

(A3) 
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Assuming that at any fixed concentration f is a continuous function of angle we 
can differentiate (A2) with respect to x: 

which gives 

_ dP2~(x) 
(A4) 

Q dP2~(x) = QP2~(x) S~Cz (A5) 
~=1 dx l=o 1 

Multiplying both sides of this equation by (x 2 -- 1) and using the recursion relation 

gives 

(x 2 -- 1) dP2~(x) 2/ (2 /+  1) 
dx -- 4 l +  1 [P2z+z(x)-- P2~<(x)] (A6) 

](2n)(2n + 1) 
,~=1 ] 4n + 1 C~ 

(2n - 2)(2n -- 1) C._z ] J Pzn- l (X)  -4,;----) 

~=1 ~ [[(2n)(2n~--T + 1) S,~C. -- (2n --4n2)(2n_ 3 -- 1)S._IC~<] P~-l(X) I 

(A7) 

Finally, using the orthogonality properties of Legendre polynomials and the expansion 

Pn(X) P.~(x) = ~ .a~_kaka~_~ (2n -+- 2m -- 4k + 1) 
k=o a.+~_~ (2n + 2m -- 2k + 1) P.+~_~(x) (AS) 

( 2 k -  1)!' 
. / ~ / ~  

al, -- k! ' 

yields 

(2m)(2m + 1) (2m -- 2)(2m -- 1) C~_1(1 -- S~-zC0) 
(4m -- 1)(4m + 1) C~(1 -- S,~Co) -- (4m -- 3)(4m -- 1) 

oe m+7, 

= ~  ~ l[ az-m+~at+~'-~a'~-t+~< ] 
~=1 ~,=Max(~-~.z-,,~+l) (l + m + n) a~+~+~ 

�9 [ 2 . ( 2 .  + 1) s . c .  - (2 .  - 2 ) (2 .  - 1) c, I (A9) 
4n + 1 4n -- 3 

The normalization o f f  gives 

1 (AIO) 
Co -- 4~r 

If, for example, we consider the equation for m = 1 and leave out all C~>2 [see 
Eq. (25)] we have 

~Cl = ~S1CICo +-3~$1Q 2 (All )  
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with solutions 

and 

Ca = 0 (isotropic distribution) 
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(A12) 

7 
Ca 4~rpBa (5 -- pBI) (A13) 

Letting pB 1 = 5 4- ApBa , for small ApBa Eq. (A13) becomes 

7 (A14) C! ~ - -  ~ ApB1 

A P P E N D I X  B - - E X P A N S I O N  OF A N G U L A R - D I S T R I B U T I O N  
F U N C T I O N  IN  POWERS OF C O N C E N T R A T I O N  

Once the angular-distribution function f (0)  has been determined at some concen- 
tration P0 > Pc, it can be determined for other concentrations p, < p < 2p0 -- pc 
by a set of linear integral equations instead of the nonlinear equation (15). Let the 
solution of (15) at p = P0 be denoted by f (Po,  x), where x = cos 0. Then for 

Pc < P  < 2 p 0 - - P c ,  

f (p ,  x) = ~ Z (p --  P~ ' x) 
n = o  Pon 

(B1) 

It is now easy to derive the equations satisfied by the successive fn .  Let 

~ =  P - - P  o; P =  aPo4-Po (B2) 
Po 

Then from (B1) and (15) 

~f(p, x) = ~ ~. ef~(po, x) 
8x 8x 

= (C~po 4- Po) c~'~f,,(po x) o~" 8 ,=o ' ~ fix(f2, f2')f~(po, x') dr2' (B3) 

Equating coefficients of each power of ~ gives an equation for eachf~.  For f0 we have: 

efo(oo, x) x 
8x = Pofo(Po , ) -~x f fl~([2, SQ')fo(Po , x') dD' (B4) 

and integration gives 

fo(oo , x) = Ko(Po ) exp [P0 f ill( ~ ,  s fo(Po , x') dD'] 05) 
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where Ko(Po) is a constant of  integration. Since f(Po, x) = fo(Po, x), Eq. (B5) is the 
same as Eq. (15) at p ~- po. This fixes the constant of integration and we have 

fo(po, x) = 

f~ satisfies the equation 

exp[po f ]3(0, O')fo(Po, x') dK2'] 

f exp[po ffi(f2, O')fo(Po , x') dO'] dr2 

ef~(po , x) ~ f ex = pofo(po, x) ~ x  ~(O, O')fo(po, x') dO' 

-~- Pofo(Po , X) -~x fl(~2, f2') fl(po , x') ds 

-Jr Pofl(Po , x) - ~  8(.(-2, -Q') fo(Po , x') dO' 

Using (B4) and rearranging terms gives 

(B6) 

(B7) 

fl(pO, x) 1 e a f 
~--s fo(po, x) = fo(po, x) ex fo(po, x) + pO-~x ~(f2, o ' )A(po,  x') dS2' (B8) 

which can be integrated directly to yield 

A(po , x) f fo(po , x) - lnfo(po, x) § po fi(o, o')f~(po , x') dO' § K~(po) (~9) 

and finally 

Hence 

f f~(Po, x) dO = 0 

For n = 1, Eqs. (Bg) and (B6) give 

ffo(Po, x) dO = 1 (Bl l )  

for all n >~ 1 (B12) 

K~(po) = - - f  lnfo(Po, x)[fo(Po, x) q-f~(Po, x)] dX2 

A(po , x) 
fo(po, x) 

-- Info(Po, x) -k Po f fi(O, O')f~(po, x') dO' 

-- f lnfo(Po, x)[fo(Po, x) q-fl(PO, x)] dK2 

(m3) 

(B14) 

and also [see Eq. (B6)] 

f f ( p ,  x) dO = 1 (B10) 

The constant of integration Kl(po) can be determined from the normalization condition 
on f. We have 
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This is a linear integral equation forf l(po,  x) in terms of the known functionfo(Po, x). 
Similar derivations give the equations for higher order f ~ .  Thus, for example, 

and 

f2(po, x) l [f~(po, x) 2 (.A~(po, x) 
70(00, x) - ~ t fo-~o; ~)] - ~ J fZ~o; ~ d~ 

+ Po f fi(D, n')[f~(Po, x')  + f2(0o,  x')] d~2' 

- -  f lnfo(po, x)[f~(po, x) + f2(0o, x)] dY2 (ms) 

/;(o0, x) _ 1 [ f?(o0,  x) - 370(00, x)fl(oo, x)S~(oo, x) ] 
fo(Po, x) ~ fo3(Po, x) 

+ ~ f A~(Oo, x) - 3/o(0o, x)fl(po,  x)f~(po, x) dS? 
fo~(po , x) 

+ po f/~(~, ~2')[A(po, x') +A(po, x')l d~' 

- f lnfo(po, x)[f2(Oo, x) +A(po,  x)] dD (1316) 
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